Temperature variability of European lakes under changed climatic conditions and its impact on plankton development

Presentation 7.11.2002
IBED, University of Amsterdam

Klaus D. Jöhnk
Temperature variability of European lakes under changed climatic conditions and its impact on plankton development

Klaus D. Joehnk
klaus.joehnk@limnophysics.de

- Introduction
- Simulations and model validation
- Geographical dependence
- Summary
Introduction

- Increase of *Daphnia* abundance in spring
- leads to „clearwater phase“ with high transparency (Secchi depth)
- Occurrence of maximum abundance at $T_{\text{epi}} = 15 – 20 \, ^\circ\text{C}$
 mean 18.5 °C – lakes of North America (Gillooly & Dodson, 2000)
 mean 15°C – European lakes
North Atlantic Oscillation

high low

warmer colder

www.ldeo.columbia.edu/NAO/
Linkage between global climate and plankton succession

NAO

- Mean Air Temperature (Dec.-March) [°C]:
 - $r = 0.62$, $p < 0.01$

- Water Temperature in May [°C]:
 - $r = 0.73$, $p < 0.005$

Local Meteorology

- Water Temperature

Daphnia

- Growth and biomass
 - $r = 0.73$, $p < 0.005$

- Grazing
 - $r = -0.84$, $p < 0.0001$

Timing of the clear-water phase

- Start clear-water phase [julian day]:
 - $r = -0.55$, $p < 0.05$
Clear-water Timing in Central European Lakes

136 seasonal courses from 28 lakes

r = -0.5, p < 0.01
after linear detrending: r = -0.45, p < 0.05

Straile (2002)
• Linkage between NAO

 water temperature
 timing of clear water-phase

• Succession events can be predicted by characteristic temperature marks

• Simulations for temperature stratification
 - reveal geographical dependence
 - allow for testing climate scenarios
Simulations and model validation

- k-e-turbulence model (LAKEoneD, Joehnk 2000)
- Ice cover model included (degree-day formulation)
- Simulation using a single artificial “test lake“
 \[H = 30 \text{ m}, \ A = 10 \text{ km}^2 \]
- Assuming knowledge of mean monthly meteorological data only
- Simulation of the response to a change in global temperature
 \[T + 2 \degree \text{C} \text{ and } T + 4 \degree \text{C} \]
- Meteorological data of 101 European stations used
- Model validation using different European locations („lakes“)

The following examples show simulations for temperature stratification and lake surface temperature (LST)
Model - LAKEoneD

$k-$\textit{ε}-turbulence model

- **Processes:**
 - Wind stress
 - Turbulent mixing
 - Shortwave radiation
 - Absorption and heating of water column
 - Longwave radiation, heat conduction, evaporation
 - Heat flow across water surface

- **Model:**
 - Horizontal flow u, v
 - Temperature T
 - Turbulent kinetic energy k
 - Turbulent dissipation rate ε
Horizontal integration \(\rightarrow\) 1D model

\[
\begin{align*}
\frac{\partial u}{\partial t} + f v &= -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \frac{\partial}{\partial z} \left(\nu + \nu_t \right) \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial t} - f u &= -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + \frac{\partial}{\partial z} \left(\nu + \nu_t \right) \frac{\partial v}{\partial z} \\
\frac{\partial p}{\partial z} &= -\rho g \\
\frac{\partial T}{\partial t} &= \frac{\partial}{\partial z} \left(\chi + \frac{\nu_t}{\sigma_T} \right) \frac{\partial T}{\partial z} + \frac{1}{\rho_0 c_p A(z)} \frac{\partial A(z)}{\partial z} \\
\end{align*}
\]

k-\(\varepsilon\)-Turbulenzmodell

\[
\begin{align*}
\frac{\partial k}{\partial t} &= \frac{\partial}{\partial z} \left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial z} + P + G - \varepsilon \\
\frac{\partial \varepsilon}{\partial t} &= \frac{\partial}{\partial z} \left(\nu + \frac{\nu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial z} + \left(c_1 P + c_3 G - c_2 \varepsilon \right) \frac{\varepsilon}{k} \\
\nu_t &= c_\mu \frac{k^2}{\varepsilon}
\end{align*}
\]

Parameter

\(c_\mu, c_1, c_2, c_3, \sigma_\tau, \sigma_k, \sigma_\varepsilon\)
LAKEoneD – I/O

- **Meteorological input:**
 - Wind speed
 - Air temperature
 - Relative humidity
 - Global irradiance
 - Cloud cover
 - Hourly values or daily mean values

- **Lake morphology:**
 - Hypsographic curve (Area-depth-distribution)

- **Results:**
 - Temperature-depth-distribution \(T(z,t) \)
 - Turbulent diffusivity \(\nu(z,t) \)
 - \(\Delta t = 5 \text{ min} \)
 - \(\Delta x = 1 \text{ m} \)
Comparing Simulations

- Example 1: Ammersee – temperature profiles
 Simulations using meteorological data from
 0) hourly measurements,
 1) constructed from mean monthly data using daily cycles with stochastic component and
 2) constructed from mean monthly data

- Example 2: Lake Constance – lake surface temperature
 Simulations using hourly data
 Simulations using interpolated mean monthly data
Comparison between simulation results for different meteorological inputs

- Simulation 1
- Simulation 2 (mean monthly values)
- Hourly meteorology
- Measurements

Simulation dates:
- 14.5.96
- 11.6.96
- 16.7.96
- 14.8.96

Measurement dates:
- 3.9.96
- 12.9.96
- 15.10.96
- 30.10.96
- 20.11.96

Temperature [°C]

Height [m]
Long term simulation results for LST of Lake Constance

Measurements
LST (monthly)
Simulation

- Measurements
- LST (monthly)
- Simulation
Comparison between simulated LST using mean monthly meteorological data and measurements

![Graph comparing simulated LST with measurements](image)

- Measurements 1979-1995
- mean LST 1901-1990 (monthly)
- Simulation
Characteristic values for geographical analysis

- Timing of $T = 6^\circ C$ - Measure for onset of stratification
- Timing of $T = 15^\circ C$ - Measure for clear-water timing
- Maximum surface temperature
- Duration of stagnation period
- Onset of ice cover
- Duration of ice cover
Simulations using
- mean monthly meteorology
- air temperature + 4°C
- hourly meteorology (1995)
Geographical dependence

- **Length of stratification period**
- **Duration of ice cover**
- **Maximum temperature**
- **Date LST = 6 °C**
 as a measure for the onset of stratification and enhanced biological activity
- **Date LST = 15 °C**
 as a measure for maximum abundance of *Daphnia*
 (18.5 °C in American lakes, 15 °C in Lake Constance)
Location of meteorological stations with climate normals including wind speed

Station List
Change in duration of stagnation period in case of increased air temperature

• stagnation period 3 – 4 weeks longer
• Length of stratification period
• **Duration of ice cover**
• Maximum temperature
• Date LST = 6 °C
 as a measure for the onset of stratification and enhanced biological activity
• **Date LST = 15 °C**
 as a measure for maximum abundance of *Daphnia*
 (18.5 °C in American lakes, 15 °C in Lake Constance)
Change in duration of ice cover

Break up starts earlier
T + 2°C : 21 days
T + 4°C : 35 days

Freezing starts later
T + 2°C : 19 days
T + 4°C : 32 days
• Length of stratification period
• Duration of ice cover
• **Maximum temperature**
• Date LST = 6 °C
as a measure for the onset of stratification and
enhanced biological activity
• Date LST = 15 °C
as a measure for maximum abundance of *Daphnia*
(18.5 °C in American lakes, 15 °C in Lake Constance)
T + 2°C
T + 4°C

slope = -0.37 °C / deg

slope = -0.32 °C / 100 m
Maximum temperature - Tair + 4 C
• Length of stratification period
• Duration of ice cover
• Maximum temperature
• Date LST = 6 °C
 as a measure for the onset of stratification and enhanced biological activity
• Date LST = 15 °C
 as a measure for maximum abundance of *Daphnia*
 (18.5 °C in American lakes, 15 °C in Lake Constance)
slope = 3 days / deg

slope = 1.4 days / 100 m
• Length of stratification period
• Duration of ice cover
• Maximum temperature
• Date LST = 6 °C
 as a measure for the onset of stratification and enhanced biological activity
• Date LST = 15 °C
 as a measure for maximum abundance of *Daphnia*
 (18.5 °C in American lakes, 15 °C in Lake Constance)
Variation of clear-water phase with geographical location

- Slope: 3.6 days / deg
- Variation: -16 days at T + 2°C, -13 days at T + 4°C

Variation of clear-water phase with elevation:

- Slope: 3.9 days / 100 m
Variation of clear-water phase with geographical location in Central European lakes

- shift in timing of clear-water phase 4 days / 100 m
Summary

• Geographical dependence of lake stratification simulated using climate normals

• Change of lake stratification characteristics due to change in air temperature $+2 \, ^\circ\text{C}$ ($+4 \, ^\circ\text{C}$) quantified

• Stagnation period prolonged $+12 \, \text{days}$ ($+24 \, \text{days}$)

• Dates of ice formation and ice break up changed, duration $-1 \, \text{month}$ ($-2 \, \text{months}$)

• LST $= 15 \, ^\circ\text{C}$: clear-water phase $16 \, (29) \, \text{days}$ earlier
In progress:

• Better automation of picking of characteristic values
• Using gridded meteorological fields
 New et al. 2002: 10˚ grid -> ca. 15000 points for Europe
• Simulating impact of realistic climate change scenarios
 (gridded fields)
• Show effects for lakes with different depths
• Geographical boundaries for climatic forced occurrence of mixing types (e.g., polymixis, meromixis)